完全平方公式教案

时间:2023-09-04 14:10:26 教案
完全平方公式教案

完全平方公式教案

作为一名默默奉献的教育工作者,往往需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们应该怎么写教案呢?以下是小编整理的完全平方公式教案,欢迎阅读与收藏。

完全平方公式教案1

一、教材分析

本节内容在全书及章节的地位:《完全平方公式》是人教版数学八年级上册第十四章的内容。在此之前,学生已学习了多项式的乘法,这为过渡到本节的学习起着铺垫作用。本节课通过学生合作学习,利用多项式相乘法则和图形解释而得到完全平方公式,进而理解和运用完全平方公式,对以后学习因式分解,解一元二次方程都具有举足轻重的作用。

作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透换元思想和数形结合思想 。

二、学情分析

学生刚学过多项式的乘法,已具备学习和运用完全平方公式的知识结构,但是由于学生初步学习乘法公式,认清公式结构并不容易,因此教学时要循序渐进。

三、教学目标

知识与技能

1.完全平方公式的推导及其应用。

2.完全平方公式的几何证明。

过程与方法

经历探索完全平方公式的过程,进一步发展符号感和推理能力。

情感态度与价值观

对学生观察能力、概括能力、语言表述能力的培养,以及数学思想的渗透。

四、教学重点难点

教学重点

完全平方公式的推导过程;结构特点与公式的应用。

教学难点

完全平方公式结构特点及其应用。

五、教法学法

多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

六、教学过程设计

师生活动

设计意图

一.复习多项式与多项式的乘法法则

1、多项式与多项式的乘法法则内容。

2、多项式与多项式的乘法练习。

二.讲授新课

完全平方公式的推导

1、利用多项式与多项式的乘法法则和几何法推导完全平方(和)公式

附:有简单的填空练习

2、利用多项式乘法则和换元法推导完全平方 (差)公式

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

二、总结完全平方公式的特点

介绍助记口诀:首平方,尾平方,首尾两倍乘积放中央。

三、课堂练习

1、改错练习

2、例题讲解(总结利用完全平方公式计算的步骤)

第一步选择公式,明确是哪两项和(或差)的平方;

第二步准确代入公式;

第三步化简。

计算练习

(1)课本110页第一题

(2) (x-6)2 (y-5)2

四、课堂小结:

1、应用完全平方公式应注意什么?

在解题过程中要准确确定a和b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab时不能少乘以2。

2、助记口诀

复习多项式与多项式的乘法法则为新课的学习做准备。

利用不同的的方法来推导完全平方公式,让学生认知数学中的不同解题方法。

利用助记口诀帮助学生更加准确的掌握完全平方公式的特点。

通过课堂练习,使学生掌握用完全平方公式计算的步骤,加强学生解题的准确率。

强调应用完全平方公式解题的注意点和助记口诀,提高学生解决问题的能力和解题的准确率。

完全平方公式教案2

1.能根据多项式的乘法推导出完全平方公式;(重点)

2.理解并掌握完全平方公式,并能进行计算.(重点、难点)

一、情境导入

计算:

(1)(x+1)2; (2)(x-1)2;

(3)(a+b)2; (4)(a-b)2.

由上述计算,你发现了什么结论?

二、合作探究

探究点:完全平方公式

【类型一】 直接运用完全平方公式进行计算

利用完全平方公式计算:

(1)(5-a)2;

(2)(-3-4n)2;

(3)(-3a+b)2.

解析:直接运用完全平方公式进行计算即可.

解:(1)(5-a)2=25-10a+a2;

(2)(-3-4n)2=92+24n+16n2;

(3)(-3a+b)2=9a2-6ab+b2.

方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.

变式训练:见《学练优》本课时练习“课堂达标训练”第12题

【类型二】 构造完全平方式

如果36x2+(+1)x+252是一个完全平方式,求的值.

解析:先根据两平方项确定出这两个数,再根据完全平方公式确定的值.

解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.

方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.

变式训练:见《学练优》本课时练习“课堂达标训练”第4题

【类型三】 运用完全平方公式进行简便计算

利用完全平方公式计算:

(1)992; (2)1022.

解析:(1)把99写成(100-1)的形式,然后利用完全平方公式展开计算.(2)可把102分成100+2,然后根据完全平方公式计算.

解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;

(2)1022=(100+2)2=1002+2×100×2+4=10404.

方法总结:利用完全平方公式计算一个数的平方时,先把这个数写成整十或整百的数与另一个数的和或差,然后根据完全平方公式展开计算.

变式训练:见《学练优》本课时练习“课堂达标训练”第13题

【类型四】 灵活运用完全平方公式求代数式的值

若(x+)2=9,且(x-)2=1.

(1)求1x2+12的值;

(2)求(x2+1)(2+1)的值.

解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.

解:(1)∵(x+)2=9,( ……此处隐藏11677个字……相异构想”.

三、教学重难点

教学重点:1、完全平方公式的推导;

2、完全平方公式的应用;

教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;

2、完全平方公式结构的认知及正确应用.

四、教学设计分析

本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.

第一环节:学生练习、暴露问题

活动内容:计算:(a+2)2

设想学生的做法有以下几种可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正确做法;

针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?

活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:

(a+2)2=a2+22,如果不将这种定式思维_就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.

第二环节:验证(a+2)2=a2–4a+22

活动内容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.

第三环节:推广到一般情况,形成公式

活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.

第四环节:数形结合

活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?

展示动画,用几何图形诠释完全平方公式的几何意义.

学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)

活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.

第五环节:进一步拓广

活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.

第六环节:总结口诀、认识特征

活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;

②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)

口诀:首平方,尾平方,首尾相乘的两倍在中央.

活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.

第七环节:公式应用

活动内容:例:计算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.

第八环节:随堂练习

活动内容:计算:①;②;③(n+1)2–n2

活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.

第九环节:学生PK

活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.

活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.

第十环节:学生反思

活动内容:通过今天这堂课的学习,你有哪些收获?

收获1:认识了完全平方公式,并能简单应用;

收获2:了解了两数和与两数差的完全平方公式之间的差异;

收获3:感受到数形结合的数学思想在数学中的作用.

活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.

第十一环节:布置作业:

课本P43习题1.13

完全平方公式教案15

教学目标

1、使学生理解完全平方公式的意义,弄清完全平方公式的形式和特点;使学生知道把完全平方公式反过来就可以得到相应的因式分解。

2、掌握运用完全平方公式分解因式的方法,能正确运用完全平方公式把多项式分解因式(直接用公式不超过两次)

教学方法:对比发现法课型新授课教具投影仪

教师活动:学生活动

复习巩固:上节课我们学习了运用平方差公式分解因式,请同学们先阅读课本87—88页,看看你能有什么发现?

新课讲解:

(投影)我们把形如a2+2ab+b2与a2-2ab+b2叫做完全平方式,和平方差公式一样,我们也可以利用它把一些多项式因式分解。例如:

a2+8a+16=a2+2×4a+42=(a+4)2

a2-8a+16=a2-2×4a+42=(a-4)2

(要强调注意符号)

首先我们来试一试:(投影:牛刀小试)

1.把下列各式分解因式:

(1)x2+8x+16;;(2)25a4+10a2+1

(3)(m+n)2-4(m+n)+4

(教师强调步骤的重要性,注意发现学生易错点,及时纠正)

2.把81x4-72x2y2+16y4分解因式

(本题用了两次乘法公式,难度稍大,教师要鼓励学生大胆尝试,敢于创新)

将乘法公式反过来就得到多项式因式分解的公式。运用这些公式把一个多项式分解因式的方法叫做运用公式法。

练习:第88页练一练第1、2题

《完全平方公式教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档