【精华】小学数学教案范文集锦6篇
作为一名教师,就难以避免地要准备教案,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?以下是小编帮大家整理的小学数学教案6篇,仅供参考,欢迎大家阅读。
小学数学教案 篇1【教材分析】
苏教版国标本小学数学第十册第36例1、“试一试”、“练一练”和练习六相关习题。这部分内容是在学生初步认识分数的基础上教学的,在三年级上册,学生已经学习把一个物体、一个图形平均分成几份,用几分之一、几分之几表示其中的一份或几份;在三年级下册,学生有学习了把由若干个物体组成的一个整体平均分成几份,用几分之一、几分之几表示其中的一份或几份。本堂课主要引导学生抽象出单位“1”的概念,概括分数的意义,认识分数单位。例1中首先让学生看图写分数,激活学生对分数的已有认识。然后分两个层次:1、让学生认识到这里分别是把一个物体、一个图形、一个计量单位、一些物体组成的整体平均分的,抽象出单位“1”的概念;2、再让学生认识到分数是把单位“1”平均分成了几份,表示这样的几份?完整的概括出分数的意义。最后让学生认识分数单位的含义。
【教学目标】
1、 使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进
一步理解分数的意义。
2、 使学生在学习分数的意义的过程中进一步培养分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
【教学重点】理解分数的意义,认识分数单位。
【教学难点】理解、抽象出单位“1”。
【教学准备】课件
【教学过程】
一、导入:
谈话:在三年级,我们曾经分两次认识分数。你能举例说说什么是分数吗?
二、新课
1、教学例1
(1)出示例1组图
提问:你能用分数表示各图中的涂色部分?
(学生独立完成在书上)
追问:你能说说每个分数各表示什么?
(同桌交流后班内汇报)
教师根据学生回答,用课件逐渐展示板书。
提问:第四个图与前三个图有什么不同吗?
引导学生明确:一个饼可以称为一个物体、一个长方形是一个图形、1米是一个计量单位,而第四幅图是把6个圆看作一个整体。
出示2/3
提问:把( )平均分成3份,表示这样2份的数?
学生讨论交流,班内汇报。
猜测:可能是一个物体、一个图形、一个计量单位或许多物体组成的一个整体。
说明:一个物体、一个图形、一个计量单位或许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
追问:在这几个图里,分别是把什么看作单位“1”,平均分成了几份?表示这样的几份?
提问:你能试着说说什么是分数吗?
教师引导概括分数意义。
(2)操作:铅笔、硬币、钟面、桃子图案
提问:你能用手中的物品表示2/3吗?你是怎样想的?
学生小组合作用提供的物品表示并交流想法。
【设计意图】学生在概括单位“1”后,通过操作丰富单位“1”的.表象,理解单位“1”不同,所表示的意义、数量都不同。
(3)出示练习六(3)
学生先按书上的说法,说说第1题中是把哪个数量看作单位“1”平均分成了几份,三好生有这样的几份;再参照第1题说说后两题中分数的意义。
(4)出示练习六(4)
先引导学生明确单位“1”,再依次出现平均分的点,让学生用分数表示并说说想法。
(5)出示练习六(5)
学生独立完成后交流所填分数有什么不同。
2认识分数单位
(1)谈话:整数、小数都有计数单位,例如:整数9的计数单位是1,9里面有9个1,0.9的计数单位是0.1,0.9里面有9个0.1。分数也有分数单位。例如:5/8里有5个1/8,5/8的分数单位是1/8,3/7、1/5、1/2呢?
提问:你能说说什么是分数单位吗?
学生讨论交流,教师引导揭示。
【设计意图】联系整数、小数的计数单位,有助于学生正确理解分数单位。
(2)完成“试一试”
学生独立思考,同桌互说后班内交流。
(3)完成“练一练”
学生独立完成,班内交流订正。
(4)完成练习六(1)
同桌读一读,并说说每个分数的分数单位。
提问:每个分数的分母与分数单位有什么关系?
课堂小结:
这节课,我们认识了是什么?生活还有哪些事物能用分数来表示,她们又是分别把谁看作单位“1”。找一找,和同学说一说。
小学数学教案 篇2教案设计
万以内数的认识是认数的第三阶段,但它的基本原理始终是十进位值制计数法。由于二年级学生的年龄特点,对抽象概念理解的能力还没有形成,因此在学生已有的对“个、十、百、千”四个数位认识的基础上,让学生充分经历数数的过程,体会从具体的形到抽象的数的形成过程,理解并掌握“10个一千是一万”这一知识点,加深学生对十进位值制计数法的认识和理解,培养学生的数感。
1.数形结合,层层递进,加深理解。
本节课的教学,从情境图入手,让学生感受到生活中数的应用,接着让学生以正方体木块为素材,一千一千地数;再以计数器为素材,一千一千地数,使学生进一步体会十进制计数原理,理解“10个一千是一万”。最后引导学生整理并制作数位顺序表,在激发学生学习兴趣的同时,使学生进一步理解数位的意义与作用,探索数位顺序表的应用价值。
2.由直观到抽象,深化对概念的理解。
本节课教学注重让学生经历数数的过程,通过数星星的`活动让学生充分地数数,在活动中深化学生对计数单位、计数方法的理解。再通过正方体木块、计数器逐步抽象,让学生直观感受到概念的形成过程,逐步培养和发展学生的数感。
课前准备
教师准备 PPT课件 计数器 数位顺序表
学生准备 计数器
教学过程
⊙情境导入,激发兴趣
1.出示课件,体会“大数”。
(1)导入:同学们,生活中处处都有数学知识,你们看,这是我们的校园,请你们来读一读校园里的这些数吧。
(2)学生尝试读数。
(3)引导学生观看南京长江大桥图,并读数:南京长江大桥公路桥长4589米,铁路桥长6772米。
2.揭示课题。
师:看来在我们的生活中还存在很多比千更大的数,今天我们就来认识它们。(板书课题:万以内数的认识) ……此处隐藏4384个字……
通过具体实例体会求商的近似数的必要性,感受取商的近似数是实际应用的需要。
(二)过程与方法
掌握用“四舍五入”法截取商的近似数的一般方法。
(三)情感态度和价值观
在解决相关实际问题时能根据实际情况合理取商的近似数,培养学生探索数学问题的兴趣和解决实际问题的能力。
二、教学重难点
教学重点:掌握用“四舍五入”法截取商的近似数的一般方法。
教学难点:理解求商的近似数与积的近似数的异同。
三、教学准备
多媒体课件。
四、教学过程
(一)复习旧知,揭示课题
1.按照要求写出表中小数的近似数。(PPT课件出示题目。)
2.求出下面各题中积的近似值。(PPT课件出示题目。)
(1)得数保留一位小数:2.83×0.9;
(2)得数保留两位小数:1.07×0.56。
3.揭示课题:我们已经会求小数乘法中积的近似数了。在小数除法中,常常会出现除不尽的情况,或者虽然除得尽,但是商的小数位数比较多,实际应用中并不需要这么多位的小数,这时就可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数,这就是我们这节课要探究的内容。(板书课题:商的近似数。)
【设计意图】通过复习求一个小数的近似数,为新课学习做好铺垫。通过复习求积的近似数,为后面将求积的近似数和求商的近似数进行对比做好准备,也利于引出课题。在引出课题的同时,让学生知道求商的近似数的必要性。
(二)创设情境,自主探究
1.教学教材第32页例6。
(1)出示例6题目信息。(PPT课件演示。)
(2)教师引导学生根据问题中的信息自主列式计算,并指名板演。(教师巡视,了解学生的计算情况,给予适当指导。)
(3)当学生除到商为两位小数、三位小数……还除不尽时,教师适时引导学生思考:在计算价钱时,通常只精确到“分”,这里的计量单位是“元”,那应该保留几位小数?除的时候应该怎么办?(教师适时板书或PPT课件演示。)
①学生回答后,修改自己的计算过程,得到19.4÷12≈1.62(元)。
②订正后,教师引导学生明确:商保留两位小数时,要除到第三位小数,再将第三位小数“四舍五入”。
(4)教师进一步引导学生思考:如果要精确到“角”,又应该保留几位小数?除的时候应该怎么办?
①学生独立完成。
②订正后,教师引导学生明确:商保留一位小数时,要除到第二位小数,再将第二位小数“四舍五入”。(教师适时板书或PPT课件演示。)
(5)教师组织学生交流讨论。
①通过上面的两次计算,想一想怎样求商的近似数?
②教师引导学生小结:求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。(教师适时板书或PPT课件演示。)
(6)介绍求商的近似数的简便的方法:求商的近似数时,除到要保留的小数位数后,可以不用再继续除,只要把余数同除数作比较。
①如果余数小于除数的一半,就说明下一位商小于5,直接舍去;(PPT课件演示例6精确到“角”的计算过程。)
②如果余数等于或大于除数的一半,就说明下一位商等于或大于5,要在已求得的商的末一位上加1。(PPT课件演示例6精确到“分”的计算过程。)
【设计意图】复习已唤起了学生用“四舍五入”法取近似数的`知识经验,这里通过买羽毛球的情境,让学生经历求商的近似数的过程,体会和总结求商的近似数的一般方法。同时也结合实例体会了商的近似数的实际意义。
2.对比求商的近似数与求积的近似数的异同。
(1)对比求“1.07×0.56”的积的近似数与求“19.4÷12”的商的近似数,想一想,它们在求法上有什么相同和不同?(PPT课件演示。)
(2)思考:求商的近似数与求积的近似数有什么相同和不同?(PPT课件演示。)
(3)引导学生交流、概括。(PPT课件演示。)
①相同点:都是按“四舍五入”法取近似数。
②不同点:求商的近似数时,只要计算到比要保留的小数位数多一位就可以了;而求积的近似数时,则要计算出整个积后再取近似数。
【设计意图】通过例题与复习题的对比,让学生明确求商的近似数与求积的近似数的异同,既突破了教学难点,又让学生形成了较完整的认知结构。
(三)巩固应用,内化方法
1.基本练习。
(1)完成教材第32页“做一做”。
①学生独立完成,教师巡视,适时指导。
②集体订正,着重让学生明确每一小题除到第几位小数,然后怎么取近似数。
(2)完成教材第36页练习八第3题。
①学生独立练习,教师巡视,适时指导。
②组织学生交流、比较取近似值的各种方法,看哪种方法既快捷又简便。明确从全局出发只列一个竖式,看最多保留三位小数,就先直接除到第四位小数,然后再一位小数、两位小数、三位小数地进行保留,这样既简便又不易出错。
2.提高练习。
判断对错。(对的在括号里打“√”,错的在括号里打“×”。)
(1)求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。( )
(2)求商的近似数时,精确到百分位,就必须除到万分位。( )
(3)求商的近似数和求积的近似数一样,必须先求出准确数。( )
3.解决问题。
(1)完成教材第36页练习八第2题。
①引导学生理解题意,让学生说一说要想知道“是上午铺路的速度快,还是下午铺路的速度快”,该怎么办?(要分别计算出上午和下午铺路的速度,并比较大小。)
②学生独立计算,教师巡视,了解学生保留不同小数位数的取值情况。
③组织学生交流各种不同保留小数位数的情况,体会只要能比较出速度的快慢,保留的小数位数越少越简单,明确取近似值时可以根据实际情况确定精确度,灵活选择保留的位数。
(2)完成教材第36页练习八第4题。
①引导学生审题,并让学生明白当题目中没有明确保留小数位数的要求时,一般要保留两位小数。
②引导学生自觉、灵活地进行简便计算(将“1.9÷0.045”转化为“3.8÷0.09”),并完成第(1)问。
③完成第(2)问:提出其他数学问题并解答。
【设计意图】练习设计注意了练习的针对性和层次性,注重了让学生通过练习内化求商的近似数的方法。同时对解决问题的技巧进行了适时点拨和指导,发展了学生思维的深刻性和灵活性。
(四)课堂小结,畅谈收获
这节课你学会了什么?有什么收获?
(五)作业练习,及时巩固
1.课堂作业:教材第36页练习八第1题。
2.课外作业:教材第36页练习八第5题。