长方形面积的计算教案

时间:2024-08-29 10:23:17 教案
长方形面积的计算教案范文汇编七篇

长方形面积的计算教案范文汇编七篇

作为一名默默奉献的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?以下是小编精心整理的长方形面积的计算教案7篇,欢迎阅读,希望大家能够喜欢。

长方形面积的计算教案 篇1

教学目标

1.初步理解长方形面积计算公式的推导过程,能正确地计算长方形的面积.

2.在长方形面积计算公式的推导过程中,培养学生抽象概括能力及动手操作和解决实际问题的能力.

教学重点

理解并掌握长方形面积的计算公式,能正确地计算长方形的面积.

教学难点

引导学生通过亲身实践推导长方形面积的计算公式.

教学过程

一、复习准备.

上节课我们学习了面积和面积单位,老师给同学们留了一道思考题.如果我们要测量学校的操场面积,用一平方米的面积单位,一个一个地拼摆,可行吗?(不可行)

那有没有什么可行的方法呢?今天我们就来研究科学的计算方法.(板书课题:长方形面积的计算)

二、学习新课.

1.动手操作,弄清基本关系:

每排个数、排数与总个数的关系.

请同学拿出1平方厘米的小正方形,摆出上面的长方形想:一排摆了多少个小正方形?一共摆了几排?(学生操作时,老师把表格画在黑板上)

(一排摆几个小正方形、摆了几排、一共摆了多少个小正方形,它的面积是多少,老师依次在表格中板书出来)

请同学用1平方厘米的小正方形摆出上面这个长方形.

每排摆了几个?摆了几排?一共有多少个?你是怎样算出来的?

(每排个数×排数=总个数)

前面讲过有多少个面积单位,面积就是多少.所以可以用“面积”代替“总个数”,在表格图“总个数”下面写上“面积”(平方厘米).

下面就用简便方法计算长方形面积.

2.想象操作,弄清过渡关系:

长与每排个数、宽与排数的关系.

投影出示:C

思考:这个长方形长4厘米,沿着长边,一排可以摆几个1平方厘米的正方形?

不用动手摆,脑子里想一想.如果长方形长5厘米、10厘米……一排可以摆几个呢?

那么,你发现了什么?(两个同学互相说一说)

生:长几厘米,每排就摆几个.

师:那么就是说,长可以代替“每排个数”.老师在表格中“每排个数”下面写出“长”(厘米).

再看,长方形的宽是3厘米,沿着宽可以摆这样的几排呢?同学们不用动手摆,怎么知道可以摆3排呢?能不能说出宽与排数的关系?

生:宽是几厘米,就可以摆成这样的几排.

师:那么,也就是说用“宽”可以代替“排数”.(老师在表格中的“排数”下面写上“宽”(厘米).

请同学们很快求出这个长方形的面积是多少?说说你是怎样算出来的.

3.理解长方形的面积与长、宽的关系.

投影出示:D

师:请同学们讨论一下,这个长方形的面积是多少?你是怎样求出来的?长方形的面积与它的长和宽有什么关系?

学生讨论后,老师引导学生对照表格,请仔细观察,再回忆一下,刚才的图A、图B、图C、图D.你发现了什么?

老师进一步引导学生,计算长方形面积的方法(最简单的)谁能概括出来?

学生总结归纳出:

长方形面积=长×宽(老师板书)

回顾一下,对照表格进行验证.

出示例题:一个长5厘米,宽3厘米的长方形纸板,它的面积是多少?

师:用我们刚才学到的知识,请同学们自己解这道题.做完后,互相交换检查一下.

订正时,老师板书:

5×3=15(平方厘米)

答:它的面积是15平方厘米.

引导学生看书,质疑.

三、巩固反馈.

1.填表.(学生口答)

2.选择正确答案.

(1)一个长方形长6厘米,宽3厘米,面积是( ).

A.18厘米 B.18平方厘米

(2)一个长方形的长是8分米,宽是4分米,周长是( )

A.24分米 B.32平方分米

3.一个长方形花坛的面积是48平方米.问:它的长和宽分别可以是多少米?

四、小结.

这节课我们学习了什么?(长方形面积的计算.)要想求长方形的'面积,必须知道什么条件?(长和宽)怎样计算长方形的面积?(长×宽=面积)计算长方形面积应该注意什么问题?(长和宽的单位名称要先统一)

五、课后作业.

1.一台电视机的外壳,一个面的长是44厘米,宽是34厘米.它的面积是多少平方厘米?

2.量出教室里黑板的长和宽各是多少分米.算出黑板的面积是多少平方分米.

3.选择一块长方形的地,沿着地边量出它的长和宽各是多少米.再算出这块地的面积是多少平方米.

长方形面积的计算教案 篇2

教学内容:教科书第123—124页,“做一做”中的题目和练习二十八的第1—5题。

教学目的:使学生初步理解长方形面积的计算方法,会运用公式正确地计算长方形的面积,培养学生的抽象概括能力。

教具、学具准备:师准备卷尺,生准备一张长5厘米,宽3厘米的长方形,20个1平方厘米的正方形。

教学过程:

一、复习。

1、让学生说一说面积的含义,并举例说明。

2、让学生说一说学过的面积单位,并比划一下它们的大小。

二、新课。

1、教学长方形面积的计算。

让生拿出准备好的长5厘米,宽3厘米的长方形,用1平方厘米的正方形测量一下它的面积。生摆完后问:一共摆了多少个1平方厘米的正方形?这个长方形的面积是多少平方厘米?沿长边摆几个正方形?沿短边摆几个正方形?

根据生的回答,是在黑板上画出图形(画长方形时用1分米表示1厘米):

师问:这个长方形的长是几厘米?沿长边一排摆几个1平方厘米的'正方形?是几平方厘米?每排正方形的个数与长方形的长有什么关系?这个长方形的宽是几厘米?沿宽边摆里几个1平方厘米的正方形?排数与长方形的宽有什么关系?一共摆了多少个正方形?你是怎样计算的?

生答,师小结并板书:5times;3=15

长times;宽=面积

2、练习。“做一做”的题目,让生先量出它的长和宽,再计算它的面积。

二、课堂练习。

1、做练习二十八的第1题。

先让学生说一说长方形的长和宽是多少厘米,再计算。

2、做练习二十八的第2题 ……此处隐藏4422个字……池的画面,给出数据,请学生计算游泳池池面的面积。

(2)师:长方形是一种很常见,很实用的图形,在我们的周围随时随地都可以看到长方形,比如,国旗的面,黑板的面等等,同学们想测量一下藏在我们身边的一些长方形的面积吗?同桌两个合作,找到长方形的面,进行测量,一边测量,一边把结果记录在测量纸上。

生测量后各组交流测量的情况。

师:看来,同学们通过这节课的学习,已经能够初步解决一些实际生活中的问题了,老师真为你们感到高兴。

(3)师:同学们,前两天,老师遇到了一件麻烦事,我办公桌上的一块台玻璃面积是24平方分米,不小心被打破了,我想配一块大小相等的玻璃,你们帮我算算看它的长和宽分别是多少呢?

生A:长8分米,宽3分米。

生B:长6分米,宽4分米。

师:你们是怎么知道的?

生C:只要想()×()=24(平方分米)

师:同学们真行,一下子帮钱老师想出了好几块面积相等的玻璃。可是钱老师要配的玻璃不光大小相等,形状也要相同,那它的长和宽究竟是多少呢?

生D:这块玻璃虽然碎了,但它的宽没有破损,所以只要先量出它的宽是多少,再用面积除以宽就能算出长是多少了。

师:这位同学生活经验真丰富,回答得好极了。

[评析:通过自主探究,获得长方形面积的计算公式后,教者设计了一些应用性练习,引导学生将获得的知识运用于实际生活,通过实际问题的解决,学生将书本知识转化为能力。整堂课临近结束之际,教者又创设了一个生活情境:玻璃被打破了,配置大小相等的玻璃,它的长和宽是多少呢?这是一个颇具开放性的问题,学生的思维有效地得到发散。学生思维发散后,教者话锋一转:玻璃的面积不光要相等,而且形状也要相同,它的长和宽究竟是多少呢?这个实际生活问题得以解决,既丰富了学生的生活经验,同时又提高了学生解决实际问题的能力。]

六、布置作业(略)

板书:

[总评:就目前小学数学课堂教学的现状来看,要很好地落实素质教育的要求,不但要从观念和方法层面进行改革,更要注重课堂教学模式的创新。作为教师首先应充分发扬教学民主,以民主合作化的教学,塑造富有主体性的人。在课堂上给学生创设自由、自主的学习活动空间,使学生的个性得到充分发展,主体和创新意识得到充分培养。其次,教师和学生在课堂上的活动,不论是教师的启发、提问,还是学生的讨论和动手实践,这些都必须紧紧围绕学生的学习。这节课改变了传统的“传递——接受”式模式,尝试采用“问题——探究”型的教学模式,教学过程()注重学习方法,注重思维方法,注重探索方法,让学生主动获取知识,同时也让学生知道这些知识是如何被发现的,结论是如何获得的,体现了“方法比知识更重要”这一新的教学价值观,令人耳目一新,颇受启发。纵观这节课体现的设计,包括师生间民主合作、学生自主探究获取知识,把知识、方法和能力相互转化相互促进等等,都对当前小学数学课堂改革的深化具有一定的借鉴意义。]

长方形面积的计算教案 篇7

素质教育目标

(一)知识教学点

1.理解一个数连续乘以两个一位数,改成乘以这两个一位数的积的算理.

2.理解一个数乘以一个两位数转化为一个数连续乘以两个一位数的算理.

(二)能力训练点

1.能正确运用一个数连续乘以两个一位数和一个数乘以两位数的简便算法.

2.正确、合理地进行简算.提高学生的计算能力,培养学生思维的灵活性.

(三)德育渗透点

通过灵活、合理的简便算法调动学生学习的积极性.

教学重点:使学生理解掌握一个数连续乘以两个一位数和一个数乘以一个两位数的`简便算法.

教学难点:选择合理的简便算法.

教具、学具准备:投影片.

教学步骤

一、铺垫孕伏

1.口算:1230 1820 2440

354254452

2.把两位数写成两个一位数相乘

15=( )( ) 30=( )( ) 24=( )( )

3.应用题:商店有5盒手电筒,每盒12个.每个手电筒卖6元,一共可以卖多少元?(让学生自己用不同方法列综合算式解答)一人板演,其它学生完成在练习本上.

第一种解法: 第二种解法:

6125 6(125)

=725 =660

=360(元) =360(元)

你发现什么?

使学生明确:

(1)两种解法的结果是一样的,即6125= 6(125)从而得出:三个数相乘,除了从左到右依次相乘外,可以先把后两个数相乘,再和第一个数相乘,结果不变.

(2)当两个乘数相乘得整十数时,第二种算法简便.

板书课题:简便算法

二、探究新知

1.教学例1

(1)出示例 1 3552

学生试做

(2)订正:使学生明确简算方法

3552

=35(52)

=3510

=350

(3)拓展补充4529

(4)学生完成做一做

2.教学例2

(1)出示例2 2516

①讨论怎样计算简便?

引导学生说出把16分成 44,这样2544计算起来比较简便.

2516

=25(44)

=2544

=1004

=400

②启发学生想不同的算法.

(2)拓展补充

1512怎样算比较简便?

(3)练习:108页的做一做

三、巩固发展

1.填空:

(1)2745 (2)1512

=27[( )○( )] =15[( )○( )]

=27[( )○( )] =15[( )○( )]

=27[ ]=15[ ]

= =

2.在( )里填上适当的数,在○里填写适当的运算符号,使计算简便

46254=46[( )○( )]

3.练习二十五1题

4.练习二十五3题(填写在书上)

5.练习二十五5题

四、全课小结:今天你又学得了哪些新知识?

五、布置作业:练习二十五4题.

六、板书设计

简便算法

有时一个数连续乘以两个一位数,改成乘以这两个一位数和积,比较简便.

例1:3552

=35(52)

=3510

=350

有时一个数乘以两位数,改成连 续乘以两个一位数,计算比较简便.

例2:25162516

=25(44) =25(28)

=2544=2528

=1004=508

=400=400

《长方形面积的计算教案范文汇编七篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档