因数与倍数教案

时间:2025-03-25 01:57:00 教案
因数与倍数教案

因数与倍数教案

作为一位无私奉献的人民教师,常常需要准备教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写才好呢?以下是小编整理的因数与倍数教案,欢迎阅读与收藏。

因数与倍数教案1

一、教材分析

在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

二、教材重难点

本课的教学重点是理解倍数和因数的含义与方法。

教学难点是掌握找一个数的倍数和因数的方法。

三、教法与学法

课堂教学要围绕培养学生的探索精神、创新精神出发,为全面提高学生的综合素质打下一定的基础。本节课根据学生的认知能力与心理特征来进行教学策略和方法的设计。

1.遵循学生主体、教师主导(组织),学生操作、探究为主线的理念,首先从学生的.操作入手,由浅入深,利用学生对乘法运算以及长方形的长、宽和面积关系的已有认识,在操作中引出倍数和因数的概念。

2.小组合作讨论法。以学生讨论、交流、相互评价,促成学生对找一个数的倍数、一个数的因数的方法进行优化处理,提升、巩固学生方法表达的完整性、有效性,避免学生只掌握了方法的理解,而不能全面的正确的表达。

3.在教学过程的设计上,根据学生的兴趣,认知规律,自己采取用教材,而不搬教材的教学设计。

四、重难点突破建议:

1.引导学生从本质上理解概念,同时结合具体的例子降低难度,避免死记硬背。因数和倍数是最基本的两个概念,只有真正理解了它们的含义,后面的概念理解才会水到渠成。

教材从整除的本质出发,给出了9个除法算式,放手让学生根据自己的理解将除法算式进行分类。学生可能会出现分成三类的现象,即将类似于8÷3=2……2和9÷5=1.8各分为一类。

此处,教师应该让学生讨论,为什么商是小数没有余数、商是整数有余数这两种情况应归为一类?让学生理解,其实例如9÷5=1.8这样商是小数没有余数的除法算式,可以写成这样的9÷5=1……4商是整数有余数的除法算式。

因此,应该将它们归为一类。然后顺利过渡到因数和倍数。

2.引导学生明确因数和倍数这一概念的前提与概念间的相互依存性。

教学时,应该使学生明确:

(1)因数和倍数这一概念的前提是被除数、除数、商都是大于0的自然数。

(2)因数与倍数概念间的相互依存性,因数、倍数都不能单独存在,在描述因数和倍数的时候必须说清楚谁是谁的因数,谁是谁的倍数。及时纠正“2是因数,12是倍数”这样的说法。至于辨析“倍数”和以前所学习的“几倍”,可以放在学生对因数与倍数有了较为全面深刻的认识之后再来具体比较,这样不容易混淆,也有利于学生的巩固。

因数与倍数教案2

教学内容

教材第17页、18页内容。

教学目标

知识目标

1.使学生初步掌握2、5的倍数的特征。

2.使学生知道奇数、偶数的概念。

能力目标

1.会判断一个数是否能被2、5整除。

2.会判断奇数、偶数。

3.培养类推能力及主动获取知识的能力。

情感目标

激发学生的学习兴趣。

教学重点

掌握2、5的倍数的特征及奇数、偶数的概念。

教学难点

灵活运用2、5的倍数的特征及奇数、偶数的概念进行综合判断。

教学过程

一、激趣引入 走进课堂

1.前面我们学习了自然数、整数、因数,后来又学习了倍数,我们都说自己学的很棒,今天我就考考大家

出示:1~100的自然数。

2.导入:

这是1~100的自然数。

你能很快找出2的所有倍数吗,并用蓝笔圈出来。试一试!

3.同桌结组,比试结果。

二、探究新知

1.2的倍数的特征。

你们圈出的这些数和2有什么联系

为什么它们都是2的倍数

这些数是分别用2X1 2X2 2X3 2X4 2X5 ……得来的

请大家观察这些数,你发现这些数有什么特征?

这些数个位上是0、2、4、6、8中的一个。

这个规律正确吗?请同学们任写一些大一点的数验证一下。(学生写数验证,小组内讨论)

学生汇报,师生共同总结:看来判断一个数是不是2的倍数,只要看这个数的个数是不是0、2、4、6、8就可以了。

三、练习 出示课本第20页第一题

自学 奇数、偶数

1、关于一个数是不是2的倍数,还有很多知识,你想知道吗?请你打开课本第17页自学。

你们从书上还知道了些什么?

自然数中,是2的.倍数的数叫做偶数,不是2的倍数的数叫做奇数。

0也是偶数。(因为0也是2的倍数,所以也是偶数)

双数指的就是偶数,那么单数指什么呢?

学生说:奇数

2、巩固练习 出示课本第17页做一做

学生口答

根据上面的学习,你们还能想到哪些数学知识呢?

自然数根据是不是2的倍数,可分为奇数和偶数。

因为0、2、4、6、8都是偶数,所以也可以说“个位上是偶数的数都是偶数”。

3、联系生活

在生活中,你在哪儿还见过奇数和偶数?

我的身高148厘米,148就是一个偶数

20xx是个偶数

同学们真有心,在我们的生活中经常用奇数、偶数对事物进行分类。

看来奇数、偶数给我们的学习、生活带来不少方便呢。

2、5的倍数的特征。

自主探索5的倍数的特征。

在课本上有100以内数的表格,请同学们打开书,找出5的倍数,看看有什么规律,和你的同桌说一说,并想办法验证你所发现的规律。

师生共同总结:个位上是0或5的数,是5的倍数。

3、既是2的倍数,又是5的倍数的数的特征

判断:下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2又是5的倍数?(60 30)

60、75、106,30,521

①引导学生思考:一个数既是2的倍数又是5的倍数,这个数有什么特征?

②汇报结果:说说你是怎样判断的?

③引导总结:个位上为0的数既是2的倍数又是5的倍数。

三、巩固发展:

(1)套圈游戏:把下面 ……此处隐藏20273个字……满足什么条件的数就是因数与倍数。这里从整数乘法的角度来理解因数和倍数。通过整数乘法2×3=6,知道“2和3满足2×3=6”这样的条件,就说明2、3和6有因数和倍数的关系。②让学生充分地用语言来表达、交流,语言描述表征数量关系,在相互交流、相互借鉴的过程中丰富对倍数和因数的认识,从而促进数感的形成。③用母子关系表征数与数之间的相互关系,更符合学生的认知规律。】

三、在整数除法中,认识因数和倍数

1、在认知冲突中发现可以用整数除法来确定两个数之间是否存在因数和倍数的关系。

教师:当遇到比较大的整数时,如13与221、27与516,你根据整数乘法13×(?)=221还容易判断13是221的因数或221是13的倍数吗?

2、用整数除法来确定两个数之间是否存在因数与倍数的关系。

教师:你有什么办法可以确定13和221是因数与倍数的关系?

学生思考:发现可以用221÷13=( )看能否得到整数的商,进而发现对于比较大的整数,如果根据整数乘法难以确定两个数之间是否存在因数与倍数的关系时,可以用整数除法来确定两个数之间是否存在因数与倍数的关系。

学生动手:计算除法,发现221÷13=17,能达到整数的商,断定13是221的因数或221是13的倍数;516÷27=19……1,得不到整数的商,可以断定27与516不是因数与倍数的关系。

3、在整数除法中,除数与被除数的关系是因数与倍数的关系。

教师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,被除数也是商的倍数,除数和商都是被除数的因数,指导学生阅读课本第5页的内容,并质疑。

4、学生举例说明因数与倍数的关系。

学生自由写出整数除法式子,互相说谁是谁的因数,谁是谁的倍数,再请两个学生汇报,订正与评价。

【设计意图:用较大的数据让学生判断,从而引起认知冲突,激发学生寻求更适合的方法,用具体的实例将抽象的概念具体化,有利于学生理解因数和倍数的关系。】

四、总结判断因数与倍数关系的一般方法。

判断两个数是否是因数与倍数关系,一般有两种方法:

第一种,用乘法,如果小的数的几倍(乘几)是不是得另一个大的数,小的数就是大的数的因数,大的数就是小的数的倍数;

第二种,用除法,如果大数除以小的数能得到整数而没有余数,小的数就是大数的因数,大数就是小的数的倍数。

【设计意图:总结阶段引导学生反思,提炼出解决问题的方法和策略,将知识系统化,提升学生的思维能力和解决问题的能力。】

五、实践应用

用你喜欢的方法判断下面每组数是不是因数与倍数的关系。

6和48 8和76 23和598

【设计意图:通过练习巩固,加深学生在语言表征、算式表征等形式来表征数与数之间的关系。】

【板书设计】

因数和倍数

在整数乘法中,因数就是积的因数,积就是因数的倍数。

在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,被除数也是商的倍数,除数和商都是被除数的因数。

【设计思路】

“因数和倍数”是一个比较抽象的概念,为了帮助学生建立和理解“因数和倍数”的概念,我们应该让学生充分经历用语言描述、算式表征数与数之间的关系的过程。

一、重视已有经验

学生在日常生活中对“人与人之间的关系”已有自己的经验,因此教学时教师要引导学生通过“人与人之间的关系”来理解“数与数之间”,让学生“学会学习”(中国学生的核心素养之一)。

二、关注多元化表征

研究表明对于一个数学概念或者数学问题,往往可以用多元的形式来表征它,通过从不同的角度对其本质进行阐述,可以使学生获得更深刻的经验,从而达到对数学本质的感悟。因此在本课教学中教师要注重让学生充分经历让学生充分地用语言来表达、交流,语言描述表征数量关系,在相互交流、相互借鉴的过程中丰富对倍数和因数的认识,从而促进数感的形成。

因数与倍数教案15

教学目标:

1、使学生结合整数乘法算式,让学生初步认识倍数和因数的含义。

2、自己探索出求一个数倍数和因数的方法。

3、使学生在认识倍数和因数以及探索一个数的倍数或因数过程中,进一步体会数学知识之间的内在联系。

教学重难点:

1、认识倍数和因数的含义,理解它们之间是相互依存的关系。

2、探索出求一个数倍数的方法。

一、创设情境,提出问题。

1.运动会上两个班级同学分被排出下面两种队形,算一算两个班各有多少人吗?9×4=36(人) 5×7=35(人)

2.自学

①、9×4=36 ,36是9和4的( );

9和4是36的( )。

②、5×7=35,( )是( )和( )的( );

( )和( )是( )的( )。

二、探究发现,建立模型。

(一)认识倍数与因数

1、根据算式说一说哪个数是哪个数的倍数,哪个数是哪个数的`因数?

25×3=75 20×5=100

24÷3=8 45÷9=5

思考:“因为25×3=75,所以25和3是因数,75是倍数”这句话对吗?

理解:倍数和因数相互依存,不能单独存在。

2、这3个算式能不能说出谁是谁的因数或者倍数?

1.3×6=7.8

4÷8=0.5

45÷6=7……3

教师引出:我们只在非零自然数范围内研究因数与倍数。

(二)找倍数

1.刚才我们是根据乘法或除法算式来判断谁是谁的倍数,谁是谁的因数。那现在老师如果给你几个数,你能判断一下谁是7的倍数吗?注意要说清你的理由。7、14、17、25、77

2.与同桌交流一下你的想法。

3.学生汇报。

4. 7=7×1

14=7×2

77=7×11

……

7÷7=1

14÷7=2

77÷7=11

可以用乘法和除法,两种方法来找一个数的倍数。

1、知道了找倍数的方法,现在就让我们来找出3的倍数。

2、再找出2和5的倍数。

3、观察:你发现这些数的倍数有什么共同特点?

o2的倍数:2,4,6,8,10,12,14……

o5的倍数:5,10,15,20,25……

o3的倍数:3,6,9,12,15……

最小的倍数都是它本身。没有最大的倍数。一个数倍数的个数是无限的,三、理解应用,强化体验。

1、判断对错

2、练习

3、小兔回家

4、找出既是4的倍数又是6的倍数的数

四、课堂小结

《因数与倍数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档