平行四边形教案

时间:2025-03-26 17:38:02 教案
【推荐】平行四边形教案四篇

【推荐】平行四边形教案四篇

作为一位不辞辛劳的人民教师,时常要开展教案准备工作,教案有利于教学水平的提高,有助于教研活动的开展。那么教案应该怎么写才合适呢?下面是小编帮大家整理的平行四边形教案4篇,欢迎大家分享。

平行四边形教案 篇1

【学习目标】

1.能运用勾股定理解决生活中与直角三角形有关的问题;

2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

【学习重、难点】

重点:勾股定理的应用

难点:将实际问题转化为数学问题

【新知预习】

1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

【导学过程】

一、情境创设

欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

二、探索活动

活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?

三、例题讲解:

1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

【反馈练习】

1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

A.20cm B.10cm C.14cm D.无法确定

3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的'距离相等,则收购站E应建在离A点多远处?

【课后作业】P67 习题2.7 1、4题

八年级数学竞赛辅导教案:由中点想到什么

第十八讲 由中点想到什么

线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

1.中线倍长;

2.作直角三角形斜边中线;

3.构造中位线;

4.构造中心对称全等三角形等.

熟悉以下基本图形,基本结论:

例题求解

【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .

(“希望杯”邀请赛试题)

思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.

注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

(1)利用直角三角斜边中线定理;

(2)运用中位线定理;

(3)倍长(或折半)法.

【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

A.AB=MN B.AB>MN C.AB

(20xx年河北省初中数学创新与知识应用竞赛试题)

思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

(浙江省宁波市中考题)

思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

若(1)BD、CF分别是△ABC的内角平分线(如图2);

(2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

(20xx年黑龙江省中考题)

思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

(20xx年天津赛区试题)

思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的 ……此处隐藏673个字……生一般的字母表示公式:S=ah

C引导学生分析公式,使学生知道,要求平行四边形面积必须知道两个条件,平行四边形的底和高。

三、深化认识

1、验证公式:

让学生用面积公式算出课本第70页平行四边形面积,看结果与数方格法得出的结果是否一样。

2、应用公式:

(1)引导学生解课本第72页例

(2)完成课本第72页做一做1

3、求下图表示的平行四边形的面积,列式为3×2.7,对吗?为什么?

四、全课总结

五、课堂作业

1、第72页做一做2

2、练习十七1

3、练习十七2、3

板书设计:

平行四边形的面积

平行四边形教案 篇3

学习目标

1、 理解平行四边形的概念及其特征,知道平行四边形两组对边分别平行且相等。

2、认识平行四边形的底和高,会画出平行四边形的高;

3、培养学生的实践能力,观察能力和分析能力。

学习重点:

掌握平行四边形的特征。

学习难点:

会画平行四边形的高。

学习准备:

课件、长方形框架、平行四边形纸、钉板

导学过程:

一、魔术表演:

教师拿出一个用四根木条钉成的长方形,两手捏住长方形的两个对角,向相反方向拉,观察两组对边有什么变化?拉成了什么图形?为什么会发生这样的变化?

二、揭示课题和目标。

三、体验平行四边形的特性

1、揭示平行四边形的不稳定性;

2、你能举出日常生活中应用平行四边形容易变形这一性质的例子吗?

3、图片展示。

四、探究平行四边形的特征

(一)观察图形,合理猜想

请学生拿出手里的平行四边形纸,让学生大胆猜平行四边形的特征。学生发言。

(二)动手操作,验证猜想

1、操作实践。教师提示用三角板或者直尺验证。学生小组验证。

2、汇报交流验证的过程。

预设:1、测量后发现对边相等

2、延长对边不相交,所以对边平行

3、用画垂线的方法,从一边向另一边画垂线,垂线段都相等,所以对边平行。

3、归纳特征。

师:现在请你用一句话概括平行四边形的特征。生用自己的语言描述。

教师帮助归纳并板书:两组对边分别平行且相等

4、应用做教材67页1题。

五、动手操作,认识“底和高”:

1、观察画出的垂直线段,告诉学生:

像这样从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的`线段叫做平行四边形的高,垂足所在的边叫平行四边形的底。

2、请学生猜猜,平行四边形有多少条高?

3、揭示平行四边形高的画法

4、练习:画出四个平行四边形的高。

五、智慧屋(练习题)

六、全课总结:通过本节课的学习,你知道了平行四边形的哪些东西呢?

平行四边形教案 篇4

教学内容:

人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

教学目标:

1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

教学重点:

掌握平行四边的面积计算公式,并能正确运用。

教学难点:

平行四边形面积计算公式的推导。

教学过程:

一、情境激趣

1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?

4.比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)

二、自主探究

1.数方格比较两个图形面积的大小。

(1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

(2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

(4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

(5)观察表格,你发现了什么?

(6)引导学生交流发现并全班反馈得出:平行四边形的`底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

(7)提出猜想:平行四边形的面积=底×高

2.操作验证。

(1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

(2)学生分组操作,教师巡视指导。

(3)学生展示不同的方法把平行四边形变成长方形。

(4)利用课件演示把平行四边形变成长方形过程。

(5)观察并思考以下两个问题:

A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

(6)交流反馈,引导学生得出:

A.形状变了,面积没变。

B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

(7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

(8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

3.教学例1。

(1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

(2)学生独立完成并反馈答案。

三、看书质疑

四、课堂总结

通过这节课的学习,你有哪些收获?(学生自由回答。)

五、巩固运用

1.练习十五第1题,让学生独立完成后反馈答案。

2.你会计算下面平行四边形的面积吗?

3.你能想办法求出下面平行四边形的面积吗?

4.练习十五第3题。

六、全课小结(略)

《【推荐】平行四边形教案四篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档