高二数学教学计划

时间:2023-07-10 03:20:19 教学计划
高二数学教学计划

高二数学教学计划

时间过得真快,总在不经意间流逝,我们的工作又将迎来新的进步,写一份计划,为接下来的学习做准备吧!计划怎么写才不会流于形式呢?下面是小编为大家整理的高二数学教学计划,希望能够帮助到大家。

高二数学教学计划1

(1)知识目标:

1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标:

1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

2.教学重点.难点

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

3.教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=2.7代入,得 .

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2.如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}

由两点间的距离公式,点M适合的条件可表示为 ①

把①式两边平方,得(x―a)2 (y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

I.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本P77练习1)

(1)圆心在原点,半径为3;

(2)圆心在 ,半径为 ;

(3)经过点 ,圆心在点 .

2.根据圆的方程写出圆心和半径

(1) ; (2) .

II.灵活应用(提升能力)

问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

[教师引导]由问题三知:圆心与半径可以确定圆.

2.已知圆的方程为 ,求过圆上一点 的切线方程.

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率-垂直)

方法二:待定系数法(利用代数关系求斜率-联立方程)

方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3.你能归纳出具有一般性的结论吗?

已知圆的方程是 ,经过圆上一点 的切线的方程是: .

III.实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:1.求以C(-1,-5)为圆心,并且和y轴相切的圆的方程.

2.已知点A(-4,-5),B(6,-1),求以AB为直径的圆的方程.

3.求圆x2 y2=13过点(-2,3)的切线方程.

4.已知圆的方程为 ,求过点 的切线方程.

(五)小结反思(拓展引申)

1.课堂小结:

(1)圆心为C(a,b),半径为r 的圆的标准方程为:

当圆心在原点时,圆的标准方程为:

(2) 求圆的方程的方法:①找出圆心和半径;②待定系数法

(3) 已知圆的方程是 ,经过圆上一点 的切线的方程是:

(4) 求解应用问题的一般方法

2.分层作业:(A)巩固型作业:课本P81-82:(习题7.6)1.2.4

(B)思维拓展型作业:

试推导过圆 上一点 的切线方程.

3.激发新疑:

问题七:1.把圆的标准方程展开后是什么形式?

2.方程: 的曲线是什么图形?

教学设计说明

圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.

本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力。

高二数学教学计划2

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学 ……此处隐藏20297个字……4.培养数学应用和创新意识,努力思考和判断现实世界中包含的一些数学模型。

5.提高学习数学的兴趣,树立学好数学的信心,形成坚忍不拔的精神和科学的态度。

6.有一定的数学视野,逐渐了解数学的科学价值、应用价值和文化价值,形成批判性思维习惯,崇尚数学的理性精神,体验数学的审美意义,从而进一步树立辩证唯物主义和历史唯物主义的世界观。

二、教材的特点:

我们用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新的关系,体现基础、时代、典型性、可接受性等。并具有以下特征:

1.“亲和力”:以生动活泼的方式激发兴趣和美感,激发学习热情。

2.“问题”:用适时问题指导数学活动,培养问题意识,培养创新精神。

3.“科学”与“思想性”:通过不同数学内容的联系与启发,强调类比、通俗化、特殊化、转化等思想方法的应用,学会数学思维,提高数学思维能力,培养理性精神。

4.“时代性”和“适用性”:用具有时代性和现实感的材料创设情境,加强数学活动,培养应用意识。

三、教学方法分析:

1.选择内容典型、丰富、熟悉的材料,用生动活泼的语言,创造能反映数学、数学思想方法、数学应用的学习情境的概念和结论,让学生对数学产生亲切感,引发学生“看发生了什么”的冲动,以培养兴趣。

2.通过“观察”、“思考”、“探究”等栏目,可以激发学生的思考和探究活动,提高学生的学习效率

高一班学习不错,但是学生自我意识差,自控力弱,需要时不时提醒学生培养自我意识。上课最大的问题是计算能力差。学生不喜欢算题。他们只关注想法。因此,在未来的教学中,重点是培养学生的计算能力,进一步提高他们的思维能力。同时,由于初中课程改革,高中教材与初中教材衔接不够强,需要在新的教学时间补充一些内容。所以时间可能还是比较紧。同时它的基础比较薄弱,只能在教学中先注重基础再注重基础,力求每节课落实一个知识点,掌握一个知识点。

五.教学措施:

1.激发学生的学习兴趣。通过数学活动、故事、吸引人的课堂、合理的要求、师生对话等方式,可以建立学生的学习信心,在主观行动下提高和提高学生的学习兴趣。

2.注意从实例出发,从感性走向理性;注意运用比较的方法反复比较相似的概念;注意结合直观的图形来说明抽象的知识;关注已有知识,启发学生思考。

3.加强学生逻辑思维能力的培养,就是解决实际问题,培养和提高学生的自学能力,养成善于分析问题的习惯,进行辩证唯物主义教育。

4.掌握公式的推导和内部联系;加强审查和检查工作;掌握典型例题的分析,讲解解题的关键和基本方法,注重提高学生分析问题的能力。

5.自始至终实施整体建设,和谐教学。

6.注重数学应用意识和能力的培养。

高二数学教学计划14

一、指导思想

努力把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,立足掌握基本技能和基本能力,着力培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。坚持一切为了学生,为了学生一切,人人都能成功的教学理念。

高二数学教学计划15

数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。小编准备了高二第一学期数学文科教学计划,具体请看以下内容。

一、指导思想:

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高空间想像、抽象概括、推理论证、运算求解。

3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

二、教学目标:

(一)情意目标:

(1)通过分析问题的方法的教学,培养学生的学习兴趣。

(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。

(3)在探究中体验获得数学规律的艰辛和乐趣,在分组研究合作的学习中学会交流、相互评价,提高学生的合作意识。

(二)能力要求:

(1)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

(2)通过揭示所学内容中的有关概念、公式和图形的对应关系,培养记忆能力。

(3)通过教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

(4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

(5)利用数形结合,另辟蹊径,提高学生运算能力。

三、教学内容

本学期教学内容有立体几何、解析几何、逻辑知识和圆锥曲线、二元一次不等式(组)与简单的线性规划。

立体几何是研究的是物体的形状、大小与位置关系。通过直观感知、操作确认、思辨论证、等方法认识和探索几何图形及其性质。通过学习,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力。

直线和圆是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系,体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

二元一次不等式(组)与简单的线性规划问题是不等式的重要应用,也是数学实际应用的重要形式之一。本节要求学生能识别不等式(组)表示的区域,并能根据区域正确地用不等式(组)来表示,能解决简单的实际问题。

常用逻辑包括命题及其关系、充要条件、简单的逻辑联结词和全称量词与存在量词

通过学习使学生理解命题的概念,了解若,则形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、充分条件与充要条件的含义;了解逻辑联结词或、且、非的含义;理解全称量词和存在量词的意义、能正确地对含一个量词的命题进行否定。

圆锥曲线研究的对象是椭圆、双曲线、抛物线,使用的方法也是代数方法。这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式的变形,这对学生能力的要求较高。坐标方法是要求学生掌握的。但是,对学生的要求不能过高,只能以绝大多数学生所能达到的程度为标准。

《高二数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档