运算教学计划
光阴的迅速,一眨眼就过去了,迎接我们的将是新的生活,新的挑战,现在就让我们好好地规划一下吧。相信大家又在为写计划犯愁了?下面是小编精心整理的运算教学计划,欢迎阅读与收藏。
运算教学计划1活动目标
1、学习7的加减,并进行7以内数的加减运算。
2、进一步巩固对加、减法算式及其含义的理解。
3、爱动脑筋,能积极参与加减运算活动。
活动准备
1、趣味练习:加减算式(2-99)
2、教具图片一张《幼儿用书》,幼儿人手一支笔。
活动过程
一、导入课题
教师:小猴们旅行回来了,我们去看看它们吧。
1、出示图片:小猴在哪里?它们都在干什么?
请幼儿说一说每个小猴子的位置,以及它们正在做什么?
如:1只小猴子,6只大猴子………
2、教师:你能用一道算式来表示吗?
引导幼儿列加法或减法算式,并说一说每个数字表示什么意思。
如:1+6=7表示1只小猴子和6只大猴子合起来是7只猴子。
再如:7—1=6表示7只猴子中,有一只小猴子剩下的都是大猴子。
3、继续引发幼儿的思考:你还能列出和刚才不一样的算式吗?
二、幼儿操作活动。
1、看图按特征标记列算式。请幼儿观察画面上的实物有多少?
它们的`颜色和其它特征是怎样的?
然后,列出7的第一组加法或减法算式。
2、观察连续的三幅图,讲述图片的含义,列出加减算式。
3、带领幼儿分别打开《幼儿用书》第12、13页,引导幼儿练习7的第二组、第三组加减运算。
(也可采用分组练习的方式,本活动只完成一页练习,其它练习放在日常或区域中进行。)
三、活动评价
请幼儿介绍“看特征列算式”的活动,鼓励幼儿说出每道算式的意思,
帮助幼儿理解加减法的含义。
运算教学计划2教学目标
1、了解同类二次根式的概念,会识别同类二次根式。
2、会利用二次根式的加减运算进行计算。
3、通过学习二次根式加减法运算培养学生简洁解题的能力,体会数学的简洁美。
教学重难点
重点
二次根式加减法
难点
1、同类二次根式的概念及其判断方法
2、熟练进行二次根式加减法的运算
教学方法
引导,讲练结合为主,自主探究
教学设计
一、同类二次根式
如果一个二次根式是最简二次根式,应满足什么条件?
二、课堂小结
(设计意图:回顾二次根式的乘除法,强调本节的.知识点,为下一节《二次根式的混合运算》打下基础。)
三、课后作业
作业:教材15页2题
运算教学计划3整体设计
教学分析
课本从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍子集和全集等概念.在安排这部分内容时,课本继续注重体现逻辑思考的方法,如类比等.
值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.
三维目标
1.理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,会求给定子集的补集,感受集合作为一种语言,在表示数学内容时的简洁和准确,进一步提高类比的能力.
2.通过观察和类比,借助Venn图理解集合的基本运算.体会直观图示对理解抽象概念的作用,培养数形结合的思想.
重点难点
教学重点:交集与并集、全集与补集的概念.
教学难点:理解交集与并集的概念,以及符号之间的区别与联系.
课时安排
2课时
教学过程
第1课时
作者:尚大志
导入新课
思路1.我们知道,实数有加法运算,两个实数可以相加,例如5+3=8.类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题.
思路2.请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?
(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};
(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}.
引导学生通过观察、类比、思考和交流,得出结论.教师强调集合也有运算,这就是我们本节课所要学习的内容.
思路3.(1)①如图1甲和乙所示,观察两个图的阴影部分,它们分别同集合A、集合B有什么关系?
图1
②观察集合A,B与集合C={1,2,3,4}之间的关系.
学生思考交流并回答,教师直接指出这就是本节课学习的课题:集合的基本运算.
(2)①已知集合A={1,2,3},B={2,3,4},写出由集合A,B中的所有元素组成的集合C.
②已知集合A={x|x>1},B={x|x<0},在数轴上表示出集合A与B,并写出由集合A与B中的所有元素组成的集合C.
推进新课
新知探究
提出问题
(1)通过上述问题中集合A,B与集合C之间的关系,类比实数的加法运算,你发现了什么?
(2)用文字语言来叙述上述问题中,集合A,B与集合C之间的关系.
(3)用数学符号来叙述上述问题中,集合A,B与集合C之间的关系.
(4)试用Venn图表示A∪B=C.
(5)请给出集合的并集定义.
(6)求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A,B与集合C之间有什么关系?
①A={2,4,6,8,10},B={3,5,8,12},C={8};
②A={x|x是国兴中学20xx年9月入学的高一年级女同学},B={x|x是国兴中学20xx年9月入学的高一年级男同学},C={x|x是国兴中学20xx年9月入学的高一年级同学}.
(7)类比集合的并集,请给出集合的交集定义,并分别用三种不同的语言形式来表达.
活动:先让学生思考或讨论问题,然后再回答,经教师提示、点拨,并对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路,主要引导学生发现集合的并集和交集运算并能用数学符号来刻画,用Venn图来表示.
讨论结 ……此处隐藏4700个字……p>
=—9 6 11—7
虽然加号、括号省略了,但—9 6 11—7仍表示—9,6,11,—7的和,所以这个算式可以读成……(教师纠正)
学生自己在练习本上计算。
先自己练习尝试用两种读法读,口答。(负9正6正11负7的和或负9加6加11减7)
让学生尝试,给了学生一个展示自己的机会,学生自己就会寻找到简单的、一般性的方法。
教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。
巩固练习
1、把下列算式写成省略括号和的形式,并把结果用两种读法读出来。
(1)(9)—(10)(—2)—(—8)3;
(2)—(—)—(—)—()
2、判断式子—7 1—5—9的正确读法是()
A、负7、正1、负5、负9;
B、减7、加1、减5、减9;
C、负7、加1、负5、减9;
D、负7、加1、减5、减9;
(二)用加法运算律计算出结果
—9 6 11—7
(三) 巩固练习
1、—4 7—4=—___—___ ___
2、6 9—15 3=___ ___ ___—___
3、—9—3 2—4=___9___3___4___2
4、— — = ___ ___ ___
1题两个学生板演,两个学生用两种读法读出结果,其他学生自行演练,然后同桌读出互相纠正。
2题抢答
按教师要求口答并读出结果
讨论后回答这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。
学生运用加法交换律时,很可能产生“—9 7 11—6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。
运算教学计划11一,教学目标
1,知识与技能:
(1)理解并集和交集的含义,会求两个简单集合的交集与并集
(2)能够使用Venn图表达两个集合的运算,体会直观图像对抽象概念理解的作用
2,过程与方法
(1)进一步体会类比的作用
(2)进一步树立数形结合的思想
3,情感态度与价值观
集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美.
二,教学重点与难点
教学重点:并集与交集的含义
教学难点:理解并集与交集的概念,符号之间的区别与联系
三,教学过程
1,创设情境
(1)通过师生互动的形式来创设问题情境,把学生全体作为一个集合,按学科兴趣划分子集,让他们亲身感受,激起他们的学习兴趣。
(2)用Venn图表示(阴影部分)
2,探究新知
(1)通过Venn图,类比实数的加法运算,引出并集的含义:一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A和集合B的并集。
记作:AB,读作:A并B,其含义用符号表示为:
(2)解剖分析:
1所有:不能认为AB是由A的'所有元素和B的所有元素组成的集合,即简单平凑,要满足集合的互异性,相同的元素即A和B的公共元素只能算作并集中的一个元素
2或: 这一条件,包括下列三种情况:
3用Venn图表示AB:
(3)完成教材P8的例4和例5(例4是较为简单的不用动笔,同学直接口答即可;例5必须动笔计算的,并且还要通过数轴辅助解决,充分体现了数形结合的思想。)
(4)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?(具体画出A与B相交的Venn图)
(5)交集的含义:一般地,由属于集合A和集合B的所有元素组成的集合,称为A与B的交集,记作:AB,读作:A交B,其含义用符号表示为
(6)解剖分析:
1且
2用Venn图表示AB:
(7)完成教材P9的例6(口述)
(8) (运用数轴,答案为 )
3,巩固练习
(1)教材P9的例7
(2)教材P11 #1 #2
4,小结作业:
(1)小结:1 并集和交集的含义及其符号表示
2 并集与交集的区别(符号等)
(2)作业:
运算教学计划12一、教材简析:
人教版实验教材根据《标准》的理念与目标要求能结合现实素材理解运算顺序,并进行简单的整数四则混合运算(以两步为主,不超过三步)(《标准》P21),采取的是与解决问题相结合的编排方式。
在此之前,学生已经学会按从左往左的顺序计算两步式题,并且知道小括号的作用,这里主要教学含有两级运算的运算顺序(特别值得注意的是象24-82这样乘除在后的.类型是第一次出现),并对此前学习过的四则混合运算进行较为系统的梳理、概括和总结。
本单元的主要内容可分为两块:1.与解决问题相结合,整理四则混合运算的顺序
2. 有关0的运算。本单元是从解决问题的角度教学整理四则混合运算的顺序,其中的问题是需要两、三步计算解决的问题。教材创设了热闹的滑雪场情境,由此生出一系列的情境串,引出相应的4个例题。每个例题都呈现了学生交流不同的解题思路,以及整理混合运算的画面,以鼓励学生在已有的知识基础上,积极思考、归纳,主动解决问题。
二、教学目标:
1.进一步掌握含有两级运算的运算顺序,正确计算三步式题;
2.让学生在经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,
学会用两、三步计算解决一些实际问题;
3.小学数学四年级下册《四则运算》教学计划:使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
三、教学重点、难点:
1、教学重点:引导学生发现并总结出有括号的算式要先算括号里的运算顺序。借助括号的加入体会解决问题途径的多样性。
2、教学难点:会用括号列综合算式。
四、单元教学措施:
1、充分利用教学中的情境图,以及教参给学生呈现出生动有趣的教学内容。
2、鼓励学生自主学习,研究四则运算的顺序。
3、充分发挥小组合作的作用。
五、课时安排(共7课时2节机动):
第一课时同级运算
第二课时积商之和(差)的混合运算
第三课时含小括号的三步计算式题
第四课时三步计算四则混合运算
第五课时有关O的运算