初三数学教学计划
时光在流逝,从不停歇,我们又将接触新的知识,学习新的技能,积累新的经验,此时此刻需要为接下来的工作做一个详细的计划了。好的计划都具备一些什么特点呢?下面是小编为大家收集的初三数学教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。
初三数学教学计划1【学习目标】:
1. 让学生经历从不同方向看物体的活动,体验从不同方向观察物体;
2. 通过实例了解视点、视线、视角的概念,以及在现实中的应用。
【课中实施】
问题一:通过实例,可以总结出: 从不同的方向观察同一个物体,可以看到 。
问题二:
如图, 叫做视点,
叫做视线,
叫做视角。
问题二:
通过观察与交流,总结物体看上去的大小和高
度由什么决定。
【当堂达标】
一、选择题(共9分)
1. 下面是空心圆柱在指定方向上看到的图形,正确的是?( )
2. 一个四棱柱从上面看如右图所示,则这个四棱柱从正面看和从左面看可能是( )
3. 不论从哪个方向看都是圆的几何体是( )。
(A)圆锥(B)圆柱 (C)球 (D)空心圆柱
二、填空题(共6分)
1. 桌上放着一个长方体和一个圆柱体,
说出下面三幅图分别是从哪个方向看到的?
2. 从哪个方向看右图能够得到下列图形:
二、作图题(共5分)
九年级数学(下)训练巩固案(第八章)
8.1 从不同的方向看物体
执笔人:权柯柯 审稿人:卜祥龙
【巩固训练】
初三数学教学计划2本学期我担任初三数学教学,为了更好的提高教学知识质量,提高学生的学习数学的技能,特制定本学期教学计划如下:
一、教学目标:
1、教育学生掌握基础知识与基本技能;培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源于实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
2、培养学生良好的数学学习习惯,在班级营造良好的学习氛围,调动大多数学生的学习积极性,提高整体的数学素质,从而提高平均分。期末平均分提高五分以上,让每个学生都有不同程度的提高。
3、辅导学困生,对一些有潜力进步,但由于各种原因成绩教差的学生,给予充分关注,调动学习积极性,使成绩尽快提高。
二、教学措施
1、尽快了解学生,融洽师生关系,消除学生逆反心理,进入正常的学习状态,建立良好的学习氛围,提高学生的学习热情。
2、认真备课。认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。提高课堂效率,向课堂45分钟要效率。深入挖掘教材、把握重点难点、关键,争取在课堂上消化知识,这也是提高学生学习兴趣的最主要途径。
3、多研究教学改革、多参加听评课活动,多学习,不断在教学实践中总结教学经验,提高自己的教学能力。
4、作好常规教学,及时批改作业,及时复习,及时反馈,及时了解学生的学习状态,采取相应的措施。不让每一名学生放弃数学。不让每一名学生放松学习,经常使用鼓励性语言,建立融洽的师生关系。
5、组织学困生的辅导。课堂上多进行提问 ,多与学生沟通,调动他们的积极性,发挥他们的潜力,增强学习信心。
三、其它方面
在认真完成本职工作的同时,以饱满的热情参加学校组织的各种活动,同时制订合理的计划,为下学期全面迎接毕业考试和升学做好准备。
初三数学教学计划3本学期是初中学习的关键时期,进入初三,学生成绩差距较大。教学任务非常艰巨。因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点。努力把今学期的任务圆满完成。本着为了学生的一切为宗旨,把培养高素质人才作为目标,特制定本计划。
一、完成九年级下册的内容
1.掌握圆的概念,圆的基本知识,会建立数学模型来解决实际问题。
2.学会用逻辑推理的思想来证明等腰三角形,平行四边形,矩形,菱形,正方形等几何图形的性质定理。
3.加强学生对数学知识的认识方法,培养他们正确的学习方法。
4、通过关於图形和证明的教学,进一步培学生的逻辑思维能力.与空间观念。
二、本学期在提高教学质量上采取的措施
1、中考复习前,认真研读中考说明,理解本学科考试水平要求层次的内涵,与新课程标准相联系,以总复习书为依据,制定复习计划。注重知识的应用性、探究性、综合性、教育性和时代性。复习指导的实施要充分体现课标精神和课改方向。
2、研究近几年中考数学命题的走向,研究中考复习策略。平时考试中,以模拟中考命题,试题来源注重信息的收集和新题型的探索,着重考查学生基本的数学思想和方法。力争每周一个知识点,周末检测。每次测完后及时批阅,争取放假前发到学生手中,便于学生及时做总结(学生将错题改在作业本上),周一师生共同检查总结效果。教师要清楚每一个学生的学习成绩层次,细致地分层教学,利用成绩追踪档案,加强对边缘生和学困生的辅导工作。
3、要重视解题后的反思,要把知识归类、方法归类。每个知识点的复习要以题代点,课堂上选取的例题力争体现本节课复习要点,特别是概念性的练习要练透练全,避免混淆。注意知识间的渗透,以点牵线,以线成面,帮助学生构建完整的知识体系。
4、复习阶段的每节课容量都很大,难免会出现个别学生思想上的波动,这就要求我们教师注意他们的动向,多鼓励,多关注,培养他们的积极性。
三、教学具体安排
1周.圆及证明回顾.
2周.总体与样本
3周.复习数与式
4周.复习方程与不等式
5周.复习函数
6周.复习函数
7周.复习图形的认识
8周.复习图形与变换
9周.复习图形与坐标
10周.复习概率与统计
11周.复习课题学习
12周.专题复习
13周.专题
14周.重要知识点的再梳理
15周.一些常见题的训练
16—19周.做往年的中考题
20 ……此处隐藏13313个字……>
2.引导学生积极参与知识的构建,组织学生自主研学、合作探究。
3.加强课后单独辅导,帮助学生查漏补缺。
4.积极与其它老师沟通,加强教研教改,提高教学水平。
5.加强对优生的监督和培养。
6.复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
初三数学教学计划14如果要想做出高效、实效,务必先从自身的工作计划开始。有了计划,才不致于使自己思想迷茫。下文为您准备了初三数学相似三角形的判定教学计划。
一、教材分析:
在前面,学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的变换。全等是相似的一种特殊情况,从这个意义上讲,研究相似比研究全等更具有一般性,所以这一章研究的问题实际上是在前面研究图形的全等和一些全等变换基础上的拓广和发展。
在后面,学生还要学习“锐角三角函数”和“投影与视图”的知识,学习这些内容,都要用到相似的知识。在物理中,学习力学、光学等,也要用到相似的知识。因此这些内容也是今后学习所必须德文基础知识。另外,在实际生活中的建筑设计、测量、绘图等许多方面,也都要用到相似的有关知识。因此这一章内容对于学生今后从事各种实际工作也具有重要作用。
二、学情分析
学生已经学过了图形的全等和全等三角形的有关知识,也研究了几种图形的变换。“全等”是图形间的一种关系,具有这种关系的两个图形叠合在一起,能够完全重合,也就是它们的形状、大小完全相同。“相似”也是指图形间的一种相互关系,但它与“全等”不同,这两个图形仅仅形状相同,大小不一定相同,其中一个图形可以看成是另一个图形按一定的比例放大或缩小得到,这种变换是相似变换。当放大或缩小的比例为1时,这两个图形就是全等的,全等是相似的一种特殊情况。学生对相似三角形的学习应该是比较轻松的。
教学目标:
根据学生已有的认知基础和教材所处的地位和作用,确定本节课的教学目标为:
1、知识技能掌握判定两个三角形相似的方法:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
2、数学思考 渗透数学中普遍存在着相互联系、相互转化,使学生感悟类比的数学方法;经历探索两个三角形相似条件的过程,体验画图操作、观察猜想、分析归纳结论的过程;在定理论证中,体会转化思想的应用。
3、解决问题 会运用“两个角对应相等的两个三角形相似”的方法进行简单推理。
4、 情感态度 从认识上培养学生从特殊到一般的方法认识事物,从思维上培养学生用类比的方法展开思维;通过画图、观察猜想、度量验证等实践活动,培养学生获得数学猜想的经验,激发学生探索知识的兴趣。
四、教学重难点:
教学重点:
两个三角形相似的判定方法3及其应用。
教学难点:
探究三角形相似的条件;运用三角形相似的判定理解决问题。
五、说教法、学法:
〈一〉教法:数学是一门培养人的思维,发展人的思维的重要学科,教学中不仅要教知识,更重要的是教方法。什么样的教法必带来相应的学法。一节课不能是单一的教法,因此,在讲授本节课时,我将采用以下方法进行教学:
(1)类比教学法:类比全等三角形的判定方法——进行探究。
(2)转化教学法:证明相似三角形的判定时,通过作全等三角形,把要证明的问题转化为我们已经解决的问题,从而把问题从未知转化为已知,从复杂转化为简单。
(3)情景教学法:创设问题情境,以学生感兴趣的,并容易回答的问题为开端,让学生在各自熟悉的场景中轻松、愉快地回答老师提出的问题后,带着成功的喜悦进入新课的学习。
(4)启发性教学法:启发性原则是永恒的。在教师的启发下,让学生成为课堂上行为的主体。
初三数学教学计划15学习目标:认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。
学习重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。
学习难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
学习过程:
一、创设情境:
如图,某传送带的一个转动轮的半径为10cm.
1.转动轮转一周,传送带上的物品A被传送多少厘米?
2.转动轮转1°,传送带上的物品A被传送多少厘米?
3.转动轮转n°,传送带上的物品A被传送多少厘米?
二、探究弧长和扇形的面积的公式
(一)、弧长公式的推导。
1、请同学们计算半径为,圆心角分别为、、、、所对的弧长。
这里关键是圆心角所对的弧长是多少,进而求出的圆心角所对的弧长。
因此弧长的计算公式为__________________________
练习:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
2、扇形的面积。
如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形
问:右图中扇形有几个?
同求弧长的思维一样,要求扇形的面积,应思考圆心角为的扇形面积是圆
面积的几分之几?进而求出圆心角的扇形面积。
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么扇形的面积为___ .
因此扇形面积的计算公式为:———————— 或 ——————————
练习:
1、如果扇形的圆心角是230°,那么这个扇形面积等于这个扇形所在圆面积的____________;
2、扇形的面积是它所在圆的面积的,这个扇形的圆心角的度数是_________°.
3、扇形的面积是S,它的半径是r,这个扇形的弧长是_____________。
4、见课本P147练习:1、2、3
三、例题讲解
例1、已知如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点。设弦AB的长为d,圆环面积S与d之间有怎样的数量关系?
例2、如图,正三角形ABC的边长为a,分别以A、B、C为圆心,为半径的圆两两相切于O1、O2、O3。求围成的图形面积(图中阴影部分)
变式练习:
如图,正三角形ABC的边长为2,分别以A、B、C为圆心,1为半径画弧,与△ABC的内切圆O围成的图形为图中阴影部分。求阴影。
例3、如图,正方形的边长为a,以各边为直径在正方形内作半圆,围成的图形(阴影部分)的面积.
例4、如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D分别在OA,OB,AB上,过点A作AF⊥ED,交ED的延长线于点F,求图中阴影部分的面积.
弧长及扇形的面积教学计划指导思想就为大家介绍到这里,希望对你有所帮助。